$$H_2$$-reducible matrices in six-dimensional mutually unbiased bases
نویسندگان
چکیده
Finding four six-dimensional mutually unbiased bases (MUBs) containing the identity matrix is a long-standing open problem in quantum information. We show that if they exist, then $$H_2$$ -reducible MUBs has exactly nine $$2\times 2$$ Hadamard submatrices. apply our result to exclude from some known CHMs, such as symmetric matrix, Hermitian Dita family, Bjorck’s circulant and Szollosi family. Our results represent latest progress on existence of MUBs.
منابع مشابه
Mutually unbiased bases and Hadamard matrices of order six
We report on a search for mutually unbiased bases MUBs in six dimensions. We find only triplets of MUBs, and thus do not come close to the theoretical upper bound 7. However, we point out that the natural habitat for sets of MUBs is the set of all complex Hadamard matrices of the given order, and we introduce a natural notion of distance between bases in Hilbert space. This allows us to draw a ...
متن کاملConstructing Mutually Unbiased Bases in Dimension Six
The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex (6 × 6) Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computati...
متن کاملReal Mutually Unbiased Bases
We tabulate bounds on the optimal number of mutually unbiased bases in R. For most dimensions d, it can be shown with relatively simple methods that either there are no real orthonormal bases that are mutually unbiased or the optimal number is at most either 2 or 3. We discuss the limitations of these methods when applied to all dimensions, shedding some light on the difficulty of obtaining tig...
متن کاملIsolated Hadamard Matrices from Mutually Unbiased Product Bases
A new construction of complex Hadamard matrices of composite order d = pq, with primes p, q, is presented which is based on pairs of mutually unbiased bases containing only product states. We illustrate the method for many product dimensions d < 100 by analytically deriving complex Hadamard matrices, both with zero and non-zero defect. In particular, we obtain at least 12 new isolated Butson-ty...
متن کاملMutually Unbiased Bases, Generalized Spin Matrices and Separability
A collection of orthonormal bases for a d × d Hilbert space is called mutually unbiased (MUB) if for any two vectors v and w from different bases the square of the inner product equals 1/d: |〈v, w〉|2 = 1 d . The MUB problem is to prove or disprove the the existence of a maximal set of d+1 bases. It has been shown in [W. K. Wootters, B. D. Fields, Annals of Physics, 191 no. 2, 363-381, (1989)] t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2021
ISSN: ['1573-1332', '1570-0755']
DOI: https://doi.org/10.1007/s11128-021-03278-8